Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1093073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505748

RESUMO

Types of nanozymes can produce free radicals and/or reactive oxygen species (ROS) to serve as broad spectrum antibacterial materials. Developing nanozyme-based antibacterial materials with good biocompatibility exhibits promising application prospects. In this study, we doped Mo to ZIF-8 (both components have good biocompatibility) to prepare a new nanozyme, Mo@ZIF-8, which can produce hydroxyl radicals (•OH) triggered by a low dosage of hydrogen peroxide (H2O2), exhibiting effective antibacterial capability against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). This work provides a reference for the design of antibacterial nanozymes with good biocompatibility.

2.
Bioinformatics ; 37(12): 1756-1758, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33471102

RESUMO

SUMMARY: scATAC-seq is a powerful approach for characterizing cell-type-specific regulatory landscapes. However, it is difficult to benchmark the performance of various scATAC-seq analysis techniques (such as clustering and deconvolution) without having a priori a known set of gold-standard cell types. To simulate scATAC-seq experiments with known cell-type labels, we introduce an efficient and scalable scATAC-seq simulation method (SCAN-ATAC-Sim) that down-samples bulk ATAC-seq data (e.g. from representative cell lines or tissues). Our protocol uses a consistent but tunable signal-to-noise ratio across cell types in a scATAC-seq simulation for integrating bulk experiments with different levels of background noise, and it independently samples twice without replacement to account for the diploid genome. Because it uses an efficient weighted reservoir sampling algorithm and is highly parallelizable with OpenMP, our implementation in C++ allows millions of cells to be simulated in less than an hour on a laptop computer. AVAILABILITY AND IMPLEMENTATION: SCAN-ATAC-Sim is available at scan-atac-sim.gersteinlab.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...